skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hardiman, Brady_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Structural diversity—the volume and physical arrangement of vegetation within the three‐dimensional (3D) space of ecosystems—is a predictor of ecosystem function that can be measured at large scales with remote sensing. However, the landscape composition and configuration of structural diversity across macrosystems have not been well described. Using a relatively recently developed method to quantify landscape composition and configuration of continuous habitat or terrain, we propose the application of gradient surface metrics (GSMs) to quantify landscape patterns of structural diversity and provide insights into how its spatial pattern relates to ecosystem function. We first applied an example set of GSMs that represent landscape heterogeneity, dominance, and edge density to Lidar‐derived structural diversity within 28 forested landscapes at National Ecological Observatory Network (NEON) sites. Second, we tested for forest type, geographic location, and climate drivers of macroscale variation in GSMs of structural diversity (GSM‐SD). Third, we demonstrated the utility of these metrics for understanding spatial patterns of ecosystem function in a case study with NDVI, a proxy of productivity. We found that GSM‐SD varied in landscapes within macrosystems, with forest type, geographic location, and climate being significantly related to some but not all metrics. We also found that dominance of high peaks of height and vertical complexity of canopy vegetation and the heterogeneity of the vertical complexity and coefficient of variation of canopy vegetation height within 120‐m patches were negatively correlated with NDVI across the 28 NEON sites. However, forest type always had a significant interaction term between these GSM‐SD and NDVI relationships. Our study demonstrates that GSMs are useful to describe the landscape composition and configuration of structural diversity and its relationship with productivity that warrants further consideration for spatially motivated management decisions. 
    more » « less
  2. Abstract AimCanopy structural complexity, which describes the degree of heterogeneity in vegetation density, is strongly tied to a number of ecosystem functions, but the community and structural characteristics that give rise to variation in complexity at site to subcontinental scales are poorly defined. We investigated how woody plant taxonomic and phylogenetic diversity, maximum canopy height, and leaf area index (LAI) relate to canopy rugosity, a measure of canopy structural complexity that is correlated with primary production, light capture, and resource‐use efficiency. LocationOur analysis used 122 plots distributed across 10 ecologically and climatically variable forests spanning a > 1,500 km latitudinal gradient within the National Ecological Observatory Network (NEON) of the USA. Time period2016–2018. Taxa studiedWoody plants. MethodsWe used univariate and multivariate modelling to examine relationships between canopy rugosity, and community and structural characteristics hypothesized to drive site and subcontinental variation in complexity. ResultsSpatial variation in canopy rugosity within sites and across the subcontinent was strongly and positively related to maximum canopy height (r2 = .87 subcontinent‐wide), with the addition of species richness in a multivariate model resolving another 2% of the variation across the subcontinent. Individually, woody plant species richness and phylogenetic diversity (r2 = .17 to .44, respectively) and LAI (r2 = .16) were weakly to moderately correlated with canopy rugosity at the subcontinental scale, and inconsistently explained spatial variation in canopy rugosity within sites. Main conclusionsWe conclude that maximum canopy height is a substantially stronger predictor of complexity than diversity or LAI within and across forests of eastern North America, suggesting that canopy volume places a primary constraint on the development of structural complexity. Management and land‐use practices that encourage and sustain tall temperate forest canopies may support greater complexity and associated increases in ecosystem functioning. 
    more » « less
  3. Abstract Many secondary deciduous forests of eastern North America are approaching a transition in which mature early‐successional trees are declining, resulting in an uncertain future for this century‐long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling‐induced mortality of >6,700 early‐successionalPopulusspp. (aspen) andBetula papyrifera(paper birch). Meteorological flux tower‐based C cycling observations from the 33‐ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid‐late‐successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1‐yr recovery of total leaf area index as mid‐late‐successionalAcer,Quercus, andPinusassumed canopy dominance. The transition to mid‐late‐successional species dominance improved carbon‐use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid‐late‐successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come. 
    more » « less
  4. Abstract Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest sub‐set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that within‐ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with sub‐continental variation in forest types and eco‐climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structure–function relationships in vegetated ecosystems. 
    more » « less